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Abstrac:t-A recently-developed constitutive model that accounts for anisotropic hardening in a
very general manner is applied to four strain-eontrolled multiaxial cyclic problems. The constitutive
model is a generalization of the Mroz multiple yield surface concept to a continuous field of yield
surfaces, and results of the four problems analyzed demonstrate that the model predicts stress
strain relationships remarkably close in qualitative behavior to experimental measurements.
Concerns voiced previously that the Mroz model requires excessive memory capacity in numerical
analysis are shown to be rendered invalid. except for cases containing loading cycles ofdiminishing
amplitude. Further discussion addresses the fact that this constitutive model in its present simplest
form, being cyclically stable, will require modifications when the effects ofcyclic hardening/softening
and cyclic creep/relaxation on the material behavior become significant.

INTRODUCTION

For materials subjected to monotonic loading, the classical flow theory of plasticity has
been well accepted to give adequately accurate predictions of stress and strain states.
However, a large number of structural components, e.g. in the automotive and aerospace
industries, experience multiaxial cyclic loading conditions. Since the isotropic hardening
rule employed in classical flow theory cannot predict the material behavior in many of the
cyclic experiments, much effort in recent years has been focused on the establishment of a
model which can properly account for the influence of complex loading histories on
subsequent deformation.

Among the proposed models, the most widely discussed appear to be: kinematic
hardening rules[l, 2] and two-surface theories (see, e.g. Ref. [3]), both types being based
on the yield surface concept, and endochronic theories (see, e.g. Ref. [4]), which are based
on the internal variable concept. Although all of these theories can be written in general
three-dimensional forms, they are usually employed in uniaxial cyclic problems, and very
few multiaxial cyclic applications can be found in the literature. This lack of extensive
experimental verification of the models is mainly attributable to the substantial amount
of computation necessitated by these theories in simulating complex loading conditions,
and to the limited number of existing test data with which the analytical results can be
compared.

From a theoretical point of view, the above-mentioned models also have the
disadvantage of containing degrees of arbitrariness in the formulation. Specifically, there
are various ways to define flow stress for kinematic hardening models since the yield
surface size, which is conventionally related to flow stress, is assumed constant in the
theory. For two-surface theories, the hardening rate of the material at an intermediate
stress state between the yield and the loading surface, as well as the progression of the
loading surface, are not uniquely defined. Finally, in order to simulate increasingly
complicated phenomena the number of material constants in endochronic theories appears
to increase unrestrictedly.

A recently developed constitutive model[S], although not yet sophisticated enough to
include all observed features of cyclic behavior, appears to contain no such arbitrariness.
This model is a generalization of Mroz's discrete multiple yield surface concept[6]. A
continuous field of yield surfaces is assumed, but subsequently the same line ofdevelopment
as the classical flow theory is followed, producing a similarly compact incremental stress
strain relationship.
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In this paper, the applicability of this generalized model is demonstrated by comparing
the predicted results with experimental data on four cyclic tension-torsion problems. The
good qualitative agreement obtained encourages further exploration in this direction to
develop a simple constitutive equation of general validity.

THE CONSTITUTIVE MODEL

The model proposed in Ref. [5J assumes the existence of a field of continuously
distributed yield surfaces in deviatoric stress space. These surfaces are concentric about
the zero stress state for materials free of residual stresses. The size of the yield surface
specifies the flow stress level as well as the associated modulus.t The smallest yield surface
therefore corresponds to initial yielding and provides an elastic modulus. The relative
positions of the yield surfaces change only during plastic deformation, according to two
rules: (1) the yield surfaces do not cross one another; (2) any yield surface with which the
loading point is in contact moves (rigidly) with the stress state. As a result, in a plastic
state, there are generally numerous mutually tangential yield surfaces at the loading point.
When loading continues, all these yield surfaces translate forward with the stress state and
the largest surface is defined as the active yield surface which determines the instantaneous
modulus. If unloading should take place, the smallest yield surface, which will be
encountered first by the unloading path, becomes the active surface.

If a von Mises type yield function is adopted, we have

f = 3/2· (s - IX):(S - IX) - k2 = 3/2(r:r) - k2 = O. (II

Here s is the deviatoric part of stress tensor a, IX denotes the position tensor of the center
of the yield surface and k is the equivalent flow stress. The yield surfaces are then spheres
in deviatoric stress space with radii ~(2/3)k.

With the rules described above, the distribution of the yield surfaces at any moment
in the loading history is completely determined by any previous deformation experienced
by the material. The current distribution then specifies how the yield surfaces will
subsequently evolve for a given continuation of the deformation history.

An example is used to illustrate the rules. Figure 1 shows the yield surface distribution
resulting from an essentially two-dimensional deformation which ends at stress state 3.
Note that the continuously distributed yield surfaces between surfaces (l) and (2), which
are all mutually tangential at stress point 1, are omitted since their positions are completely
defined by those of (l) and (2). Similarly omitted are the yield surfaces between (2) and (3).
This implies that an infinite number of loading paths can result in the same final stress
state and leave the material with the same memory of histories. This memory then
determines the material hardening rate during subsequent deformations. Two examples of
these paths are illustrated in Fig. 1: the simplest piecewise proportional loading 0-1-2- 3
and a much more complex one with continuous mode variations and additional small
loops. The two paths differ from each other merely by the amount of total strain
accumulated and plastic work done. At the current stress state 3, depending on whether
unloading or continued loading occurs, it is either the dotted subsequent yield surface or
the solid loading surface (3), respectively, that determines the instantaneous modulus. The
corresponding directions in which the yield surfaces will move upon further plastic
deformation, are denoted, respectively, by the unit tensors flU and fl in the figure. The yield
surface center, accordingly, moves by the amount of ~(2/3)dk for every flow stress
increment dk; that is

dlX = ~(2/3) dk . fl. (2)

t The continuous yield-surface generalization was also reached earlier by Mr6z and co-workers[7-9). The
formulations in Refs [7-9], however, adopted a different rule for the determination of tangent modulus during
plastic deformation. They thus do not use the universal stress-strain curve concept as in classical plasticity
theory. and is essentially equivalent to a two-surface theory.
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Fig. 1. A sketch of the yield surface distribution in deviatoric stress space after elastic-plastic
deformation.

From the consistency condition, which states that the plastic loading point is always on
the yield surface, and eqn (2) we obtain

dk = 3/2(r: ds) .
k + J(3/2X r: fJ)

(3)

The associated flow rule and the requirement that the uniaxial cyclic behavior is
recovered give

Here E is Young's modulus and (E\). is the tangent modulus measured at flow stress level
k. These moduli are obtained from a stabilized universal cyclic stress-strain curve, similar
to the universal stress-strain curve concept employed in classical plasticity theory. Note
that it is how (E\). is determined that distinguishes the current model from the generalization
proposed in Ref. [7].

By combining the elastic and plastic parts of the strain increment, the incremental
stress-strain relationship can be written in component form as

or

(4)

E
da .. =--

I) 1 + v (5)
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where \' is Poisson's ratio and c5 iJ is the Kronecker delta. This constitutive equation has
the same compact general form as that in classical flow theory.

It is appropriate to mention here that earlier researchers who compared other models
with the Mroz discrete multiple yield surface concept were usually concerned with the
large extra memory space needed to store the positions of all the yield surfaces. The current
model, although having an infinite number of yield surfaces, requires simply the position
of the largest yield surface encountered in every continuous loading path to be recorded.
This surface contains sufficient information to determine the influence of the particular
continuous loading path on subsequent deformations. In other words, starting from a
virgin state, more information than needed in the classical flow theory is added to the
memory whenever unloading takes place (r: dO' < 0); this extra memory space can be
eliminated whenever the flow stress level associated with it is exceeded by that in a
subsequent loading process. Therefore, depending on the complexity of the loading paths.
the size of the memory space need not be greatly increased from that required by the widely
employed flow theory. (The exception is when the loading history involves cycles of
diminishing amplitude.)

APPLICATIONS

In this section, results from the application of the current constitutive model to four
complex tension-torsion problems are shown. In the figures, subscripts 11 and 12 are used
to denote the tensile and torsional components of the stress (strain) tensor, respectively.
Plane-stress conditions are assumed in the 3-direction. The stabilized stress-strain curve
is approximated by a power-law curve which gives the following tangent modulus at flow
stress level k

Here (J y is the initial yield stress in uniaxial tension and n is the strain hardening exponent.
Values of these constants used in the examples are approximately chosen as listed in the
figures. Note that the absolute values of (Jy and E are not included here since they do not
affect the results. Their ratio, the yield strain, on the other hand, determines the extent of
plastic deformation in a prescribed cyclic history.

All four examples are strain-controlled to enable closer comparisons with existing test
results. Note that a strain-controlled experiment can be more precisely controlled than a
stress-controlled one. The analysis of a strain-controlled process on the other hand is less
straightforward than a stress-controlled process because the adopted model is based on
rules established in a stress space. That is, the direction of the stress increment has to be
determined first from eqn (5).

The first example involves several sharp strain path changes as shown in Fig. 2(a), to
simulate the strain history tested in Ref. [10]. The predicted stress history is displayed in
Fig. 2(b), which is observed to resemble closely the experimental results shown in Fig. 2(c),
reproduced from Ref. [10]. This qualitative agreement seems to support the hardening
behavior derived from the concept of a continuous yield surface field, despite the fact that
the size and shape of the initial yield surface are assumed to be constant in the current
model but were found to vary after plastic deformation in Ref. [10]. The latter difference
may become a source of disagreement in future quantitative comparisons, although at least
part of the difference can be attributed to the sensitivity of experimental observations to
the adopted subsequent yield surface definition.

Experiments in Ref. [10] also include hours of relaxation time which cannot be
accounted for by the current time-independent model. However, the good agreement
observed here seems to suggest that the time period of stress relaxation used in Ref. [10J
(19h at maximum) does not have a long-term effect on later deformations and thus can
be neglected.
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Fig. 2. (a) The prescribed strain path. (b) the predicted stress history and (c) the experimental stress
path. from Ref. [10]. of a thin aluminum cylindrical tube.
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Fig. 3(a). Example 2: the prescribed strain path.

For the next three examples the imposed strain history and three plots of predicted
results (for the stress history and the tensile and the torsional stress-strain curves), are
presented. They are qualitatively compared with their experimental counterparts from Refs
[11-14].

Figure 3(a) shows a strain history containing many different loading modes. This
problem was studied in Refs [11,12]. In Ref. [11] the Mroz multiple yield surface concept
incorporated in a two-surface theory was concluded to give better results than the kinematic
hardening models with either Prager's or Ziegler's rule. Here the current model predicts
similar results as those obtained from the Mroz model in Refs [11,12]. As shown in Figs
3(b)-(d), these predictions display all the important features observed in experiments (Figs
3(b')-(d'). The only disagreement, which may be categorized as quantitative, is that the
difference in the axial stress level at States 2 and 5 is predicted to be much greater than
that measured in experiments.

The last two examples include mode changes as well as load cycles in the strain
histories. Cycles of various modes are separated by a reference cycle, denoted by 0 in Figs
4(a) and 5(a). The strain path therefore follows the pattern 0-1-0-2- .... In Figs 4 and 5
the curves representing results from the reference cycles are omitted to give clearer plots.
The corresponding experimental results of Fig. 5 are reproduced in Figs 4(b')-(d') and
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Fig. 3. (b) The predicted stress history and (b') the corresponding experimental result. reproduced
from Ref. [II].
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Fig. 3. (c) The predicted tensile stress-strain relationship and (c') the corresponding experimental
result from Ref. [II].

5(b')-(d') from Refs [13, 14]. The qualitative agreement between the theory and experiments
is seen to be remarkably good.

DISCUSSION

In the previous section it is clearly demonstrated that the hardening behavior derived
from the generalized Mroz model gives results which are in extremely good qualitative
agreement with experimental observations. Here the model is discussed further from
various points of view.

Computational aspects
As noted in earlier sections, the assertion that substantially large memory space is

needed for Mroz's model is incorrect. By adopting a continuous yield surface field the total
additional memory space required depends entirely on the complexity of the history and
may not be much more than that required in a classical flow theory calculation. As an
example, the number of yield surfaces recorded along each portion of the history is listed
in parentheses in Fig. 2(b).
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Fig. 3. (d) The predicted torsional stress-strain relationship and (d') the corresponding experimental
result from Ref. [II].
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Fig. 4. (b) The predicted stress history and (b') the corresponding experimental result reproduced
from Ref. [13].
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Fig. 5. (b) The predicted stress history and (b') the corresponding experimental result stress history
from Ref. [14].
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Fig. 5. (c) The predicted tensile stress-strain relationship and (c') the corresponding experimental
result from Ref. [14].

Creep and relaxation
The current model, being cyclically stable, does not account for cyclic creep/relaxation

phenomena. This deficiency of the current model may be remedied by assuming a
transformation rule of the yield surface field that is additionally dependent on mean stress
and plastic work.

Softening and hardening
Although the present model contains mechanisms for latent softening and hardening,

namely those resulting from earlier loading of different modes, it cannot account for the
material structure-related cyclic softening and hardening. Phenomenologically, the latter
is likely to be approximated, for instance, by making the size and distribution of the yield
surfaces dependent on the amount of plastic work. However, more physical understanding
and test data on these types of behavior are desirable to warrant sophisticated manipulations
of the yield surface field.
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Fig. 5. (d) The predicted torsional stress-strain relationship and (d') the corresponding experimental
result from Ref. [14].

Yield function
Here only the von Mises type of yield function is used because of its simple tensor

form. The yield function is further assumed to preserve its original form during any elastic
plastic deformation. Such an assumption seems to fail to comply with numerous
experimental observations that the shape varies as well as the size of the yield surface.
However, it is important to point out that the ability to follow the exact shape variation
of the yield surface during plastic deformation should not be over-emphasized, since, except
for the subsequent yield stress (upon unloading), the direction of the plastic strain increment,
the progression of the plastic stress state and the associated instantaneous modulus are all
determined by the local behavior of the yield surface near the loading point.

Finally, it is important to realize that the present model only provides a tool to
analyze the stress state, strain state and the energy dissipated during complex loading
conditions. For the complete design of a structural component, employment of a failure
criterion is also important.
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